A Survey of Lagrangian Mechanics and Control on Lie Algebroids and Groupoids
نویسندگان
چکیده
In this survey, we present a geometric description of Lagrangian and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie algebroid formalism allows us to analyze systems subject to nonholonomic constraints, mechanical control systems, Discrete Mechanics and extensions to Classical Field Theory within a single framework. Various examples along the discussion illustrate the soundness of the approach.
منابع مشابه
m at h . D G ] 1 3 A ug 2 00 5 1 DYNAMICAL SYSTEMS ON LEIBNIZ ALGEBROIDS
In this paper we study the differential systems on Leibniz algebroids. We introduce a class of almost metriplectic manifolds as a special case of Leibniz manifolds. Also, the notion of almost metriplectic algebroid is introduced. These types of algebroids are used in the presentation of associated differential systems. We give some interesting examples of differential systems on algebroids and ...
متن کاملSymmetry Reduction of Discrete Lagrangian Mechanics on Lie Groups
For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian l we define a Poisson structure via the pull-back of the Lie-Poisson structure on the dual of the Lie algebra g∗ by the corresponding Legendre transform. The main result shown in this paper is that this structure coincides with the reduction under the symmetry group G of the canonical discrete Lagrange 2-form...
متن کاملLie Algebroids in Classical Mechanics and Optimal Control
We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
متن کاملGeometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids
We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this s...
متن کاملSingular Lagrangian Systems and Variational Constrained Mechanics on Lie Algebroids
The purpose of this paper is describe Lagrangian Mechanics for constrained systems on Lie algebroids, a natural framework which covers a wide range of situations (systems on Lie groups, quotients by the action of a Lie group, standard tangent bundles...). In particular, we are interested in two cases: singular Lagrangian systems and vakonomic mechanics (variational constrained mechanics). Sever...
متن کامل